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Our previous paper emphasized a method for obtaining the crystallographic

point groups of ®ve-dimensional space, i.e. the subgroups of the crystal family

holohedries. Moreover, it recalled the names of the crystal families and the

symbols of their holohedries. These results being obtained, this paper gives a

geometrical symbol to each of these point groups described as Weigel±Phan±

Veysseyre symbols (WPV symbols). In most cases, these symbols make it

possible to reconstitute all the elements of the groups. The point symmetry

operation symbols, which are the basis of the Hermann±Mauguin symbols (HM

symbols) as well as of the WPV symbols, that have been de®ned from the cyclic

groups generated by the ®ve-dimensional point symmetry operations are

recalled. The basic principles of the WPV system of crystallographic point-group

symbols are explained and a list of 196 symbols of ®ve-dimensional space out of

955 is given. All the information given by the WPV symbol of a point group is

detailed and analysed through some examples and the study of the (hexagon

oblique)-al crystal family. Finally, the polar point groups of ®ve-dimensional

space are speci®ed.

1. Introduction

The elements that have been used are to be found in Brown et

al. (1978), and in some of our papers published either in Acta

Crystallographica (Weigel et al., 1987, 1990; Veysseyre et al.,

1991; Phan et al., 1991; Weigel & Veysseyre, 1993) or in

Compte Rendus de l'AcadeÂmie des Sciences (Veysseyre et al.,

1990) or in theses (Veysseyre, 1987; Phan, 1989).

The ®rst step consists of listing the crystal families and the

symbols of the 227 crystallographic point groups of four-

dimensional space (or 4D space for short). In the previous

paper (Veysseyre, & Veysseyre, 2002), we explained how the

crystal families of 5D space and their names had been found.

Owing to some geometrical properties of the unit cells, each

crystal family holohedry and all their subgroups (or point

groups) have been given a geometrical symbol, as shown in

Table 1, for the symbols of three crystal families of 4D space

which are different from the symbols published in the Report

of a Subcommittee on the Nomenclature of n-Dimensional

Crystallography (Janssen et al., 1999). These symbols have

already been published in Weigel et al. (1987); however,

according to the Report of the Subcommittee and in order to

apply these results to the point groups of 5D space, some of

these symbols have been changed. The classi®cation order

given by Janssen et al. (1999) has been kept.

The second step consists of listing the 38 cyclic groups

generated by the 38 crystallographic point symmetry opera-

tions (PSOs) of 5D space. All these symbols are summarized

in Table 2. Each of these point groups is to be given a symbol

connected with the generator element. We intend to explain

some of them:
* �1 is the symbol of the cyclic group generated by the total

inversion (homothetie �1) in 3D space, its order is two. In

the same way, symbol �15 or ��1 is given to the cyclic group of

order two generated by total inversion (homothetie �15) in 5D

space.
* �4 is the symbol of the cyclic group generated by the PSOÿ

4.�1, i.e. a simple rotation±inversion, whereas ��4 is the symbol of

the cyclic group generated by the PSOÿ 4.��1, i.e. a double

rotation±inversion.
* 44 is the symbol of a cyclic group of order four generated

by the double rotation 44 whereas 44 is the symbol of the

cyclic group generated by the PSOÿ 44.��1, i.e. a double rota-

tion±inversion, or by the point operation 44m, i.e. a double

rotation±re¯ection.
* [10] is the cyclic group of order ten, generated by the

double crystallographic rotation 101
xy103

zt, i.e. a rotation

through angle 2�=10 in the plane (xy) and a rotation through

angle 6�=10 in the orthogonal plane (zt), whereas �10� is the

symbol of a cyclic group of order ten generated by the PSOÿ

101
xy103

zt:
��1 (see Table 2). In the same way, ���5�, ���8� and �12� are

the symbols of cyclic groups of order ten, eight and twelve,

respectively.



So, a single bar above a symbol means `product with the

homothetie �1' in a 3D space, and a double bar means `product

with the homothetie ��1(�15)' in a 5D space.

Remark 1. Whatever the dimension of the space, any re¯ection

always acts along a straight line (orthogonal to the mirror),

any simple rotation acts in a plane, any inversion �1 acts in a 3D

space, any double rotation acts in a 4D space, any inversion ��1
acts in a 5D space.

In the previous paper, we explained how the number of

crystallographic point groups belonging to each family had

been found and their elements have been listed.

The basic principles of our system of point-group symbols

(WPV symbols) are developed in x2 and the properties of

these symbols in x3; some point-group symbols of 4D space

which have not been listed in Table 1 of Janssen et al. (1999)

are explained in x4. A speci®c family, i.e. the (hexagon

oblique)-al family, is thoroughly studied in x5. The subgroups

of 15 families are listed in Table 3. Polar groups of 5D space

are all the crystallographic point groups of 4D space, as shown

in x6. Obviously, these 227 point groups have the same WPV

symbol in 4D space as in 5D space.

2. Basic principles of the WPV system of
crystallographic point-group symbols

The point-group symbols of 1D, 2D and 3D spaces are the well

known HM symbols; they are tabulated in Volume A of

International Tables for Crystallography (1996).

The ®ve basic principles for the WPV system of point-group

symbols in the nD spaces are given in the following lines:

Principle 1. Any symbol is the product of either a cyclic

point-group symbol (see Table 2) or a HM symbol of a point

group; some examples are given after the second principle.

This cyclic group or the group de®ned by one HM symbol

which appears in a WPV symbol is called a `point-group

factor'.

Whenever possible, the use of the HM symbols absolutely

retains priority for the choice of the factors of the WPV

symbols except for groups �6 and �62m denoted respectively as

3?m and 3m?m.

Principle 2. The different kinds of group products are

characterized by three different symbols. For a direct product

of groups, we use either the mark � (mathematical meaning)

or the mark ? if the spaces in which the two groups act are

orthogonal. For a product of groups (not a direct product), a

dot . is used. Moreover, the mark permits one to precisely know

the dimension in which the point group (PG) acts (see x3).

The choice of mark has the following priority: ? (if

convenient), then � (if ? is not convenient), and last . (if �
and ? are not convenient). Here are some examples:
* Group 4?(222) acts in 5D space because rotation 4 acts in

2D space and group 222 acts in 3D space.

Group ��4�(222) acts in 5D space because PSO ��4xy acts in 5D

space (xyztu) (see Table 2) while group 222 acts in 3D space

(ztu).

However, ��4?(222) is the WPV symbol of a point group

which acts in 8D space because ��4 acts in 5D space and 222 acts

in 3D space.
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Table 1
Alternative WPV point-group symbols in 4D space, complementing the
Subcommittee Report.

The symbols of the Report (Janssen et al., 1999, Table 1) are in brackets.

Hexagon square family

18±1 Order 24 3.(422) [3m1(1m4)]

Order 48 6.(422) [6m1(1m4)]; 6.�42m [6m1(14m)];
�3m.4 [6m1(m14)]

Cubic-al family

19±1 Order 24 �4.3.�1 [432(m1m)]

19±2 Order 24 42.3.2 [�43m(m1m)]

Order 48 m�3?m [m�43m(m1m)]; 42.3.2.m [m�3m(11m)]

Di hexagons family

20±2 Order 18 (32).3 [3m1(1m3)]

Order 36 �3�3m [6m1(613)]; �3.�3 [6m1(m63)];

{(32).3}��14 [6m1(6m3)]; �3m.3 [6m1(m13)]

Order 72 Holohedry: (3m?3m)��14 [6m11(613m)]

20±3 Order 36 6.�3 [6m1(163)]; (622).3 [6m1(1m3)]

Order 72 (622).6 [6m1(1m6)]; �3m.6 [6m11(163m)]

Table 2
The WPV symbols of the 38 crystallographic cyclic point groups in 5D
space.

These are the symbols of their only generator except for those that are listed in
the table footnotes.

19 rotation groups (or GP+) 19 non-rotation groups (or GPÿ)

1 33 m 33?m (66)

2 43 �1 64 (64)

3 63 �3 63 (63)

4 44 �4 44 (44)

6 64 3?m 43 (43)

�14
[5] �15 33 (33)

3?2 (32) 66 3?�1 (�32) [��5] (�5�)
42 [8] 3��15 (�62) [��8] (�8�)
62 [12] ��4 (�42) �10� (�10�)

[10] [12] (�12�)

About the choice of some symbols:
For some groups, we suggest the following symbols because the de®nition of the
operations that generate these groups clearly appears. Moreover, the double bar is
suppressed whenever possible:

3?m � �6 �15 � ��1 3? �1 � ��6 3� �15 � ��3 33?m � 66:
3?2 is the symbol of the cyclic group generated by a threefold rotation through a plane
P1 and by a twofold rotation through a plane P2 orthogonal to plane P1. The order of
group 3?2 equals 3� 2 = 6. Another possible symbol for this group should be 32 because
this group can also be considered as generated by the double rotation denoted 32.
However, the symbol 3?2 is correct because 3 is prime relative to 2 and it has a
geometrical meaning. Moreover, we prefer to avoid the symbol 32 for this group because it
is the HM symbol of another crystallographic group.
In 3D space (hence in 4D, 5D, . . . , nD space), there are two groups whose HM symbols
32 and 23 may be mistaken for each other. However, we have decided to keep them. The
point group denoted 32 is isomorphic to the abstract dihedral group D6; its order is six
and its elements are as follows: the identity, the rotations through a ternary axis and three
binary axes. The point group denoted 23 is the rotation group of group �43m, i.e. of the
regular tetrahedron; its order is 12 and its elements are as follows: the identity and the
rotations through four ternary axes and three binary axes.
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Table 3
Five-dimensional point groups of the ®rst 15 families.

For each family, the ®rst column gives its indicating number, its name and its point-group numbers. Then, the number of subgroups of given order is indicated and
the WPV symbols of these groups are listed. The family holohedry together with its order is listed in the right part of the table. The subfamilies of a given family are
denoted by lowercase letters. For instance, XVb, XVa are two subfamilies (i.e. centred families) of family XV `Hexagon orthorhombic family '. Some generators are
written at the bottom of this table.

Family name Order Point-group symbols Order Holohedry symbol

I Decaclinic (2 PGs) 1 1 2 �15

II Hexaclinic-al (3 PGs) 2 �14; m 4 �14?m

III Triclinic oblique (3 PGs) 2 2; �1 4 �1?2

IV Triclinic rectangle (4 PGs) 4 �14�2; mm; �1?m 8 �1?mm

V (Di obliques)-al (4 PGs) 4 2?2; 2?m; �14��1 8 2?2?m

VI Triclinic square (7 PGs) 4 4; ��4 16 �1?4mm

8 �14�4; 4mm; �1?4; ��4.m

VII Triclinic hexagon

VIIb (2 PGs) 3 3 6 3 � �15

VIIa (3 PGs) 6 �14.3; 3m 12 3m��15

VII (7 PGs) 6 6; �1?3

12 �14.6; 6mm; �1?6; �1?3m 24 �1?6mm

VIII Oblique orthorhombic

VIIIa (3 PGs) 4 222; 2��1 8 (222)��15

VIII (5 PGs) 8 2?(222); mmm; 2?mm; (2��1)?m 16 2?mmm

IX Orthotopic 5d

IXa (4 PGs) 8 (222)��14; (222)?m; (2��1)��14 16 (222)?m��15

IX (4 PGs) 16 22222; mmmm; (222)?mm 32 mmmmm

X (Square oblique)-al

Xa (8 PGs) 4 42; �4

8 42.�14; �42m; �4.�14; 42.m; �4��15 16 (�42m)��15

X (16 PGs) 8 422; ��4.�1; 4?2; �4?2; 4?m; 4.�1; 42?m

16 (422)?2; 4mm?m; (422)��15; (�42m)?2; 32 4mm?2?m

(42.m)?m; 4mm?2; 4?2?m; (4.�1)?m

XI (Hexagon oblique)-al

XId (3 PGs) 6 62; 3?m 12 62��15

XIc (3 PGs) 6 32; 3.�1 12 (32)��15

XIb (5 PGs) 12 62.�14; 3m?m; (3?m).�14; 3m.�14 24 (3m?m)��15

XIa (8 PGs) 6 3?2;

12 (32)?2; �3m; 3m?2; �3?2; �3.�14 24 (�3m)��15

XI (16 PGs) 12 622; (32).�1; 6?2; 6?m; 6.�1; 3?2?m; �3��14

24 (622)?2; 6mm?m; (622)��15; 3m?2?m; 48 6mm?2?m

(�3m)��15; 6mm?2; 6?2?m; (6.�1)?m

XII (Diclinic di squares)-al (3 PGs) 4 44; 44 8 44?m

XIII (Diclinic di hexagons)-al

XIIIa (2 PGs) 3 33 6 33��15

XIII (3 PGs) 6 66; 33?m 12 66?m

XIV Square orthorhombic

XIVa (15 PGs) 8 42.2; �4.�1; 42��14; �4��14; �4?m; 42.�1

16 (42.2)��14; (�42m)��14; (�42m)?m; (42.2)��15; 32 (�42m?m)��15

(�4.�1)��14; (�4.�1)?m; (42.�1)��14; (�4��14)?m

XIV (18 PGs) 16 (422)��14; (�4.�1)�2; (422)?m; (42.2)?m;

4?(222); ��4�(222); 4?mm; (4.�1)�2; �4?mm

32 (422)�(222); 4mm?mm; {(422)��14}?m; (�42m)�(222); 64 4mm?mmm

(�42m)?mm; (422)?mm; 4mm?(222); 4?mmm

XV Hexagon orthorhombic

XVb (4 PGs) 12 62.2; (32)?m; 62.�1 24

XVa (15 PGs) 12 (32)�2; �3.�1; 62��14; 3?mm; (3.�1)�2; �3?m {(32)?m}��15

24 (62.2)��14; 3m?mm; {(32)�2}��15; �3m?m; 48 �3m?mm

(32)?mm; (�3.�1)?m; (62.�1)��14; �3?mm

XV (26 PGs) 12 3?(222); �3�2

24 (622)��14; (32)�(222); (622)?m; �3m�2; {(32)�2}?m;

(�3.�1)��14; 6?(622); (�3.�14)�2; 3m?(222); 3?mmm;

{3?(222)}��15; 6?mm; (6.�1)��14; (�3�2)?m



Principle 3. The point-group order is the product of the

factor point-group orders of the WPV symbol.

For instance, the order of group ��4�(222) is 16 = 4 � 4, the

same as ��4?(222) order.

The order of group (622)�(222) is 48 = 12� 4 and this point

group acts in 5D space.

Principle 4. The WPV symbol de®nes the group itself in a

one-to-one way among the same order group; if it is necessary,

two (or three) characteristic generators are given at the

bottom of Table 3.

Principle 5. The symbols of the geometrically Z-reducible

crystal family holohedries in the nD space are always as

follows:

Hn � Hp ? Hq ? . . . ? Hr;

where p + q + . . . + r = n and Hp, Hq, . . . , Hr are crystal family

holohedries of p-, q-, . . . r-dimensional spaces, indices p, q,

. . . , r are classi®ed in decreasing order. If two indices are

equal, the point-group factor of the highest order always

appears at the beginning of the WPV symbol (see Table 3).

Example: �1 is the holohedry of the triclinic family in 3D

space and 4mm is the holohedry of the square family in 2D

space; so �1?4mm is the holohedry of the triclinic square

family in 5D space.

Some examples have been given in the Abstracts from the

European Crystallographic Meeting in Prague in 1998 (Weigel

et al., 1998).

3. The meaning of the point-group WPV symbols

The WPV symbol of a point group immediately gives the

following three sets of data:

(1) The dimension n of the space in which it acts.

Examples: groups 4mm (or 4.m); 422 (or 4.2); 4.�1; 4.�14.

First, it should be recalled that m, 2, �1, �14 are the total

inversions in the 1D, 2D, 3D, 4D spaces. Rotation 4 acts in the

2D space (xy). Then, group 4mm acts in plane (xy). Actually,

none of the m inversions can act along axis z because, if they

could, the WPV symbol of the corresponding point group

would be 4?m (Principle 2, x2). The latter is the WPV symbol

of a point group in 3D, 4D, 5D, . . . spaces. As a result, the four

re¯ections of group 4mm only act along four directions of

plane (xy), i.e. mx, my, mx+y, mxÿy.

In the same way, group 422 acts in space (xyz), while group

4.�1 acts in the 4D space (xyzt), because PSO �1 does not act in

the space (xyz). Indeed, if PSO �1 acts in space (xyz), the WPV

symbol of the point group would be 4?m (as previously

de®ned). So, the supports of the four inversions �1 of group 4.�1
are necessarily in spaces (xzt), (yzt), (x+yzt), (xÿyzt).

Group 4.�14 acts in the 5D space (xyztu) where the supports

of the four inversions �14 are the spaces (xztu), (yztu),

(x+yztu), (xÿyztu).

(2) The name and the holohedry WPV symbol of the crystal

family it belongs to, in the spaces of n, n+1, n+2, . . . , dimen-

sions (n is the smallest dimension of the space in which the

point group acts).

Example 1: group 4mm belongs to the following crystal

families: square crystal family (2D space, holohedry 4mm),

tetragonal (or square-al) crystal family (3D space, holohedry

4mm?m), square oblique crystal family (4D space, holohedry

4mm?2) and square triclinic crystal family (5D space, holo-

hedry 4mm?�1). Indeed, the holohedry orders of these crystal

families are the lowest order among the crystal families

containing the square symmetry.

Example 2: group 4.�1 belongs to square oblique crystal

family (4D space, holohedry 4mm?2), and to (square

oblique)-al crystal family (5D space, holohedry 4mm?2?m).

Example 3: group �1?4 belongs to triclinic square crystal

family because its holohedry, �1?4mm, is the lowest order

among the crystal families containing the square symmetry (it

should be noted that any cell remains unchanged by the total

inversion in its space).

(3) The elements of the point-group factors together with the

subspaces in which they act, which enable one to list all the

elements and the geometrical supports of the point group (see

Principle 1, the de®nition of the group factor). As can be seen

in Table 3, it is necessary to know the geometrical supports of

the generators in very few cases.

Example: group (622)�(222), of order 48, belongs to the

hexagon orthorhombic crystal family of the 5D space and its

elements are as follows:

Acta Cryst. (2002). A58, 434±440 Veysseyre et al. � Point groups of five-dimensional space. 2 437

research papers

Table 3 (continued)

Family name Order Point-group symbols Order Holohedry symbol

48 (622)�(222); 6mm?mm; {(622)��14}?m; 96 6mm?mmm

3m?mmm; �3m�(222); (�3m?m)��14;

(622)?mm; 6mm?(222); 6?mmm

Generators of some point groups

The following abridged notations are used: mm instead of m?m, mmm instead of m?m?m, . . . and PG for point group.

(222).(2.�14): (222)(ztu), 2xy, �14�xyzt� 62.�1: 6xy2zt, �1ztu (6.�1)��14: 6xy, �1xzt , �14�xyzu� 42.�14: 4xy2zt, �14�x�y ztu� id for 62.�14

42.m: 4xy2zt, mz, �1xzu
�4.�1: �4xyz, �1xzt id for �3.�1 �4.�1��14: �14�xyzt� id for �3.�1��14

�4.�1�2: 2tu

�3.�14: �3xyz, �14�xztu� �3.�14�2: 2zt
�3�2: �3xyz, 2zt

�3m�2: �3m�xyz�, 2zt

��4.�1:
��4xy, �1xztt

��4.m: ��4xy, mx
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* The rotations of subgroup 6 of group 622, i.e. 6xy, in plane

(xy) and the twofold rotations of group 222 acting in orthog-

onal supplementary space (ztu); consequently, we obtain the

supports of the six elements of cyclic group 6, and the ones of

the three rotations 2.
* There are three hexagonal subcells in three 3D subspaces

(in which three subgroups 622 act), i.e. spaces (xyz), (xyt),

(xyu). Hence, the supports of the 18 corresponding rotations 2.
* The products of 6�1

xy and 3�1
xy by the three rotations 2zt, 2zu

and 2tu enable one to obtain the six rotations 62 and the six

rotations 32 whose supports are (xy,zt), (xy,zu) and (xy, tu).
* Finally, the products of all the single twofold rotations

give either one twofold other rotation or one of the nine �14

inversions whose supports are spaces (xyzt), (xyzu), (xytu),

(xztu), (yztu), (x+yztu), (xÿyztu), (xÿ2yztu), (2xÿyztu).

Therefore, the geometrical supports of the 48 elements of

group (622)�(222) can easily be obtained. Moreover, it should

be noted that all the elements of this group are pure rotations.

Then, group (622)�(222) is the rotation group of the hexagon

orthorhombic crystal family holohedry, i.e. group 6mm?mmm

(order 96 = 12 � 8).

However, group (622)?(222) is a point group acting in a 6D

space because group 622 acts in space (xyz) and group 222 in

space (tuv); its order is also 48.

Therefore, for any point group, it is possible to ®nd the

order, the dimension n of the space in which it acts, the name

of its crystal family, the WPV symbol holohedry, together with

its elements and their geometrical supports. A particular

family, (hexagon oblique)-al crystal family will be studied in

x5.

4. Crystallographic WPV point-group symbols in 4D
and 5D spaces

Most of the WPV symbols of 4D space have been adopted

in Table 3 of the Subcommittee Report (Janssen et al., 1999),

either as principal or alternative ones for the ®rst 20 crystal

families of this space. But some symbols are missing in families

18, 19 and 20. These symbols are listed in Table 1 when they

are different of the symbols of the Report. Through three

examples, we verify that each WPV symbol unambiguously

de®nes one and only one group, together with its elements and

their geometrical supports.
* Group �3m.4 belongs to the hexagon square crystal family;

it is a group of order 12 � 4 = 48. Rotation 4 acts in plane (zt)

while two subgroups �3m (of order 12) act in spaces (xyz) and

(xyt), respectively.
* Group 42.3.2 belongs to the cubic-al crystal family. The

three types of double rotations 42 act in spaces (xyzt), (yztx)

and (xzty) while rotations 3 and 2 are the rotations of the cubic

family in 3D space (xyz).
* Group �3m.3 belongs to the di hexagons crystal family; it is

a group of order 6 � 6 = 36. It is possible to obtain these 36

PSOs from one PSO �3 (mxÿy6�1
zt ), one PSO m (mz) of group �3m

and one rotation 3 (3�1
xy ) of group 3. The elements of this group

are the following ones: 1 or identity; two threefold rotations,

3�1
xy , 3�1

zt (hence four elements); one double rotation 3�1
xy 3�1

zt

(hence four elements); six elements �3; six elements 3m (or �6);

nine twofold rotations 2; three elements m; three elements 1.

5. Study of a particular family

Table 2 lists the WPV symbols of the 38 cyclic point groups

and Table 3 the WPV symbols of 15 crystal families of 5D

space. Here, we give a detailed study of the (hexagon oblique)-

al crystal family.

5.1. Crystal cell of the (hexagon oblique)-al family

The crystal cell of the (hexagon oblique)-al family is the

orthogonal product of the following three subcells: one

hexagon in plane (xy), one parallelogram (oblique cell) in

plane (zt), and one segment in a 1D space de®ned by axis u.

Obviously, the three subspaces (xy), (zt) and (u) are mutually

orthogonal and the choice of the axes x and y is as follows:

5.2. (Hexagon oblique)-al family holohedry

The holohedry symbol of this family is easily obtained, i.e.

6mm?2?m. Actually, this holohedry is the direct product of

the holohedry of the three subcells generating the studied

family cell. Point-group order equals 12 � 2 � 2 = 48, i.e. the

product of the three holohedry orders.

5.3. Symbols of the 48 point operations of the (hexagon
oblique)-al family holohedry

The direct product of the 12 PSOs of group 6mm by the two

PSOs of group 2 and then by the two PSOs of group m give the

48 PSOs of the studied family holohedry. In this group, there

are 24 PSO+s and 24 PSOÿs.

The 24 PSOs+ are the following ones:

Identity

8 PSOs 2

7 PSOs �14

2 PSOs 3

2 PSOs 6

2 PSOs 32

2 PSOs 62

1

2xy 2xu 2yu 2x�y u 22xÿy u 2xÿ2y u 2zt

�1xyzt
�1xztu

�1yztu
�1x�y ztu

�12xÿy ztu
�1xÿ2y ztu

3�1
xy

6�1
xy

3�1
xy 2zt

6�1
xy 2zt:

The 24 PSOsÿare the following ones:



Total homothetie

8 PSOs �1

7 PSOs m

2 PSOs �6

2 PSOs �3

2 PSOs ��6

2 PSOs ��3

�15 or ��1

�1xyu
�1xzt

�1yzt
�1ztu

�1x�y zt
�12xÿy zt

�1xÿ2y zt

mx my mx�y m2xÿy mxÿ2y mu

3�1
xy mu

6�1
xy mu

3�1
xy

�1ztu

6�1
xy

�1ztu:

5.4. Different crystallographic subgroups of the (hexagon
oblique)-al family

Point group 6mm?2?m has 71 subgroups. Of these 71

subgroups, 36 belong to the families numbered I to X (see

Table 3) which are overlooked here. However, some of these

groups can be recalled as examples:

the subgroups of order 2: m; 2; �1; �14; �15 �or ��1�;
the subgroup of order 3: 3;

the following ten subgroups of order 4: 222, 2?2, mm, 2?m

(or 2=m), 2.�1, �1?2, �1?m, �14?m, �14.�1, 2.�14.

For instance, m belongs to the hexaclinic-al family, 2 to the

triclinic oblique family (see Table 3).

Now, the new 35 point groups of this crystal family are

studied through the list of their point operations. Conse-

quently, a WPV symbol is suggested for each of these groups.

These point groups are as follows:

(i) Six subgroups of order 6. The elements of these

subgroups are listed in brackets.

32 �1; 2xÿy z; 22xÿy z; 2xÿ2y z; 3�1
xy �

3?2 �1; 2tu; 3�1
xy ; 3�1

xy 2tu�
62 �1; 3�1

xy ; 6�1
xy 2z�t u; �1xy z�tu�

3?m �1;mu; 3�1
xy ; 3�1

xy mu�
3:�1 �1; 3�1

xy ; �1xtu; �1ytu; �1x�y tu�
�3 �1; 3�1

xy ; 6�1
xy mu; �1xyu�:

(ii) Eighteen subgroups of order 12.

62� �15 �32�� �15 62:�14 3m?m �3?m�:�14 3m� �14

�32�?2 �3m 3m?2 �3?2 �3:�14 622

�32�:�1 6?2 6?m 6:�1 3?2 ?m �3� �14:

(iii) Ten subgroups of order 24.

�3m?m�� �15
�3m� �15 �622�?2 6mm?m �622�� �15

3m?2 ?m ��3m�:�14 6mm?2 6?2? m �6:�1�?m:

(iv) One subgroup of order 48, i.e. holohedry 6mm?2?m.

6. Polar crystallographic point symmetry groups of five-
dimensional space

A general de®nition of a polar crystallographic point

symmetry group in nD space has been given in Veysseyre &

Weigel (1989): `A crystallographic point symmetry group of

nD space is polar if all its elements (i.e. its PSOs) leave

unchanged, point by point, a subspace of dimension p less

than n.'

Consequently, any point group acting in an n-dimensional

space is a polar (or ferroelectric) point group in n+1-, n+2-, . . .
dimensional spaces.

Therefore, the number of polar crystallographic point

groups of n-dimensional space is equal to the number of

crystallographic point groups of nÿ1-dimensional space.

Indeed, the ten point groups of 3D space acting in 2D space

(1; m; 2; 3; 4; 6; mm; 3m; 4mm; 6mm) are the ferroelectric (or

polar) point groups of the physical space. These are all the

point groups of 2D space. Two of them (1 and m) are the point

groups of 1D space, so they keep all the vectors of the physical

space parallel to a plane unchanged; the other eight keep all

the vectors of the physical space parallel to an axis, z for

example, unchanged.

For instance, among the above-listed 35 groups of the

(hexagon oblique)-al crystal family:
* Groups 32; 3?m; �3; �3m; 622; 3m?m; 6?m; 6mm?m are

polar groups in 5D space. Actually, these groups act in a 3D

space, as shown by their geometrical supports which contain

only three vectors (see x5.4). Moreover, these groups have the

same symbol as in 3D space. So they keep all the vectors of the

5D space parallel to a plane unchanged.
* Groups 3?2; 3.�1; 6.�1; 3m��14; 6?2; 3m?2; 6mm?2 are

polar groups in 5D space. Actually, these groups act in a 4D

space, as shown by their geometrical supports which contain

only four vectors (see x5.4). So they keep all the vectors of the

5D space parallel to an axis unchanged. Moreover, these point

groups have the same symbol in 4D space.

Consequently, every point group of 1D, 2D, 3D or 4D spaces

is a polar group of 5D space.

7. Conclusions

In this paper, the WPV symbols of the 196 crystallographic

point groups belonging to the `®rst' 15 crystal families of the

5D space have been given (Table 3).

As shown through some examples, this partial list of the

point groups of 5D space allows one, thanks to their symbol, to

®nd the order of the point group, the crystal family that it

belongs to (and its cell), as well as its holohedry symbol, the

dimension n� 5 of the space in which it acts, the elements and

their geometrical supports in the point group.

It is obvious that only 75 point groups of 4D space among

the 227 ones are the bases of the 196 point groups of 5D space

which are being studied here. But the WPV symbols of the

other 152 point groups of 4D space are published in the

Abstracts of the European Crystallographic Meeting in 1998

(Weigel et al., 1998).

Among the 227 point groups of 4D space, 32 of them act in

1D, 2D and 3D spaces, the other 195 (227ÿ32) acting in 4D

space. If G is the symbol of one group among these 195, G?m

is the symbol of one group acting in 5D space because PSO m
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acts in space de®ned by axis u, a straight line orthogonal to 4D

space (xyzt). Then, it is possible to know the WPV symbols

together with their detailed description of 500 point symmetry

groups of 5D space:

227 PGs of type G (polar groups of 5D space);

195 PGs of type G?m;

78 PGs among the 196 PGs listed Table 3, which are neither

G type nor G?m type.

Finally, WPV symbols are very useful for the tabulation and

the description of the space groups in the nD spaces in the

same way as the HM symbols do in the physical space.
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